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ABSTRACT

The basic physical mechanisms governing the daytime evolution of up-valley winds in mountain valleys are
investigated using a series of numerical simulations of thermally driven flow over idealized three-dimensional
topography. The three-dimensional topography used in this study is composed of two, two-dimensional topog-
raphies: one a slope connecting a plain with a plateau and the other a valley with a horizontal floor. The present
two-dimensional simulations of the valley flow agree with results of previous investigations in that the heated
sidewalls produce upslope flows that require a compensating subsidence in the valley core bringing down
potentially warmer air from the stable free atmosphere. In the context of the three-dimensional valley–plain
simulations, the authors find that this subsidence heating in the valley core is the main contributor to the valley–
plain temperature contrast, which, under the hydrostatic approximation, is the main contributor to the valley–
plain pressure difference that drives the up-valley wind.

1. Introduction

Thermally driven wind in mountain valleys has been
the subject of many observations and theoretical inves-
tigations. Insolation of valley areas during the day in-
duces heating of air layers close to the ground and ther-
mally driven upslope flows; likewise, radiative cooling
of valley areas during the night produces downslope
flows. When a valley has little variation in width along
its axis, the cross-valley circulation induced by the
‘‘slope flow’’ can be considered essentially two-dimen-
sional in the cross-valley plane. However, when there
is a strong variation of valley width with distance along
the valley axis, a three-dimensional circulation, known
as the ‘‘valley wind,’’ is induced. Using a combination
of idealized numerical simulations and analysis we re-
consider here the basic mechanisms responsible for the
valley wind.

Pioneering work by early Austrian and German me-
teorologists provided the basic observational results and
concepts regarding the valley wind. These contributions
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were clearly summarized and brought to a unified and
consistent theory in the extensive and thorough review
by Wagner (1938). The understanding based on this ear-
ly work is summarized in the well-known schematic
diagram of Defant (1949, reproduced in Fig. 1), which
shows the basic features of slope and valley winds pro-
duced in a typical diurnal cycle. More recent reviews
on the subject have been provided by Whiteman (1990)
concerning observations of the valley wind and by Eg-
ger (1990) concerning modeling and theory. According
to Fig. 1, the basic requirement for producing a valley
wind is for the valley to widen to a degree where it can
be considered a plain. Various field measurements (e.g.,
Nickus and Vergeiner 1984; Vergeiner and Dreiseitl
1987) have shown that there are larger daily temperature
ranges within a valley than there are in the adjacent
plain at any height within the valley. The associated
variation of hydrostatic pressure between the valley and
the plain provides the basic force that produces the val-
ley wind. Hence knowledge of the factors responsible
for the enhanced temperature variation of the valley
atmosphere occupies a central role in the theory of val-
ley winds. Wagner (1932) suggested that the key factor
is the smaller amount of air within the valley volume
(i.e., the volume defined by the valley topped by a hor-
izontal surface at the ridge top) than that within a vol-
ume of the same height over the adjacent plain. As a
result, the same solar radiation flux through the equal
areas topping the valley and the plain, respectively, re-
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FIG. 1. Diurnal cycle of valley winds (after Defant 1949, 1951).
(a) Sunrise: onset of upslope winds (white arrows); continuation of
mountain wind (black arrows). Valley is cold, plains are warm. (b)
Forenoon (about 0900): strong slope winds, transition from mountain
wind to valley wind. Valley temperature is same as plain. (c) Noon
and early afternoon: diminishing slope winds; fully developed valley
wind. Valley is warmer than plains. (d) Late afternoon: slope winds
have ceased, valley wind continues. Valley is still warmer than plain.
(e) Evening: onset of downslope winds, diminishing valley wind.
Valley is slightly warmer than plains. (f ) Early night: well developed
downslope winds, transition from valley wind to mountain wind.
Valley and plains are at same temperature. (g) Middle of the night:
downslope winds continue, mountain wind fully developed. Valley
is colder than plains. (h) Late night to morning: downslope winds
have ceased, mountain wind fills valley. Valley is colder than plain.

sults in stronger warming of the smaller valley air vol-
ume. Under the above-stated assumptions, one can de-
rive a formula in which the ratio of volume-averaged
valley to plain temperature (called the topographic am-
plification factor) is proportional to the ratio of plain to
valley volume (Whiteman 1990, 9–12; Vergeiner 1982;
Neininger 1982; Steinacker 1984).

In the present work we report on numerical simula-
tions of the thermally driven flow produced using ide-
alized valley–plain topographies in the spirit of that de-
picted in Fig. 1. Consistent with the early studies, the
simulations indicate that there is a strong difference in
temperature between the valley air and that of the ad-
jacent plain. Analysis of the valley–plain simulations
indicates the important role of the cross-valley circu-
lation in elevating central-valley temperatures during
the day, as found in purely two-dimensional (valley

only) calculations (e.g., Kondo et al. 1989; Egger 1990;
Noppel and Fiedler 2002). Our analysis further shows
that the drop in hydrostatic pressure associated with the
subsidence warming in the valley drives the valley wind
from the plain (where there is no valley circulation and,
hence, no subsidence warming).

The foregoing explanation, based on the cross-valley
circulation, is naturally outside the reach of the volume
effect theory, which does not require detailed knowl-
edge of the interior valley flow other than that it must
not transport heat through the valley top. To the authors’
knowledge, there has not yet been a quantitative eval-
uation (from either observations or numerical simula-
tions) of the extent to which the latter condition holds.
The present simulations afford us the opportunity to
make such an evaluation. Analysis of the present sim-
ulations suggests that the heat fluxes associated with the
above-described cross-valley circulations reach well be-
yond the valley top and that the temperature excess in
the valley center is mostly a consequence of subsidence
warming associated with the cross-valley circulation.

2. Modeling of valley winds

To investigate the factors that produce the thermally
driven wind from a plain to a valley (Figs. 1b–d), we
performed numerical simulations based on an idealized
version of a typical valley–plain system shown in Fig.
2, which is similar to the one used in McNider and
Pielke (1981, their Fig. 9) and, more recently, by Li and
Atkinson (1999, their Fig. 1c). The topography and
computational domain shown in Fig. 2 were chosen to
satisfy the following criteria. First and foremost is the
criterion that the bottom of the valley has the same
elevation as that of the adjacent plain so that there could
be no contribution to the valley flow from an upslope
wind. The second criterion is that the valley–plain do-
main be long enough to contain completely the along-
valley wind system so that there could be no question
about the possibly uncertain effects of numerical bound-
ary conditions in the along-valley direction. Third, the
valley slopes, while realistically steep, are not so steep
as to cause numerical inaccuracy in the flow represented
by the terrain-following grid system used in the nu-
merical simulations.

The analytical expression for the topography used in
this study satisfying these criteria is given by

z 5 h(x, y) 5 h h (y)h (x),P Y X (1)

where

1 1 y
h (y) 5 1 tanh and (2)Y 1 22 2 Sy
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FIG. 2. View of the three-dimensional idealized valley–plain topography and domain adopted
in this paper.

1, |x | . S 1 Vx x1 1 |x | 2 Vxh (x) 5 2 cos p , V , |x | , S 1 VX x x x1 22 2 Sx
0, |x | , V . x

(3)

Notice that the topography h(x, y) is the product of two
simpler ones: a slope connecting two plateaus hY(y) and
an infinitely long valley hX(x); each will be considered
individually in section 3.

We present here simulations of winds occurring in a
valley of medium size with Sx 5 6 km (sloping sidewall
width) and Vx 5 0.5 km (valley floor half width), re-
sulting in a crest-to-crest width between ridge top
heights at the valley sidewalls 2(Sx 1 Vx) 5 13 km.
Beyond the ridge tops there are plateaus extending 1
km to the edges of the computational domain located
at x 5 67.5 km. In the along-valley, or y direction, we
take Sy 5 8 km and let y 5 0 define the ‘‘mouth’’ of
the valley [i.e., hY(0) 5 1/2]; the computational domain
extends from y 5 280 to 120 km. Conditions at both
x and y boundaries are discussed below. For all simu-
lations the valley depth hP 5 1 km. Maximum values
for the slopes can be calculated from (2) and (3), yield-
ing 0.5hP/Sy 5 0.0625 for the plateau and 0.5phP/Sx 5
0.2618 for the valley.

To simulate thermally forced winds, the Weather Re-
search and Forecasting (WRF) model has been adopted
(Michalakes et al. 2000). The WRF model is a general-
purpose model that can be used for operational numer-
ical weather prediction as well as for research. Here we

describe a research application of WRF to the study of
the valley wind. For simplicity of interpretation we will
view the flow in Cartesian coordinates and neglect the
Coriolis effect. With these restrictions, the WRF model
can be configured to solve the following equations.

Equation of state:

p 5 rR T; (4)d

Conservation of mass:

]r ]U ]V ]W
1 1 1 5 0; (5)

]t ]x ]y ]z

Conservation of momentum:

]U ]p ]Uu ]Vu ]Wu
1 c Q 5 2 2 2 1 F , (6)p x]t ]x ]x ]y ]z

]V ]p ]Uy ]Vy ]Wy
1 c Q 5 2 2 2 1 F , (7)p y]t ]y ]x ]y ]z

and

]W ]p ]Uw ]Vw ]Ww
1 c Q 1 gr 5 2 2 2 1 F ; (8)p z]t ]z ]x ]y ]z

and

Conservation of energy:

]Q ]Uu ]Vu ]Wu
1 1 1 5 rQ. (9)

]t ]x ]y ]z

In the above set of equations,

U 5 ru, V 5 ry, W 5 rw, Q 5 ru, (10)
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where (u, y, w) are the velocity components in the (x,
y, z) directions, u is the potential temperature, and r is
the air density. The other variables appearing above are
the absolute temperature T and the Exner function p 5
(p/p0) , where p is the pressure and p0 5 1000 hPaR /cd p

is a reference value. The specific heat at constant pres-
sure for dry air is given by cp 5 1004.5 J K21 kg21,
and Rd 5 (2/7)cp is the gas constant for dry air; Fx, Fy,
and Fz are friction terms.

In order to satisfy the fundamental boundary condi-
tion of no flow through the topography, the model uses
terrain-following coordinates as described in Michalak-
es et al. (2000).

The computational domain of the simulations is 200
km in the y (along valley) direction and 15 km in the
x (across valley) direction and is covered by a rectan-
gular grid of 200 3 15 equally spaced points (Dy 5
Dx 5 1 km). The computational domain extends to 5
km in the vertical direction and is covered by 100 equal-
ly spaced grid points, starting from the ground (thus Dz
5 40 m over the plateau and Dz 5 50 m over the valley
floor). The time step adopted is 12 s for the advection
terms with a 1.2-s time step to compute the acoustic
modes. A third-order-accurate Runge–Kutta scheme is
used for the time integration, and third- and fifth-order-
accurate spatial discretization schemes are used for the
vertical and horizontal advection schemes, respectively
(Wicker and Skamarock 2002).

A reasonable compromise between realism and sim-
plicity leads to the following choices for the boundary
conditions: as mentioned, the terrain-following coor-
dinate is specifically designed to enforce the imper-
meability condition at the lower coordinate surface; in
addition we let the stress be zero there simply to min-
imize the number of effects that may modify, but cannot
produce, the valley wind. At the upper domain bound-
ary, a rigid lid (w 5 0) is employed since we have found
that there is little or no vertically propagating gravity
waves produced in the present simulations. At the north-
ern and southern ends of the valley–plain system (y 5
280 and 1120 km, respectively), we place vertical im-
permeable walls; since the heating cycle lasts only a
finite time (6 h), the along-valley circulation has only
a finite extent, and we have found through trial and error
that the solution features of interest here are not sensitive
to these walls as long they are located roughly 80 km
or more from the valley mouth. Finally, the choice of
boundary condition in the x directions presents two in-
teresting possibilities: periodic conditions would mean
that simulations pertain to an infinite series of repeating
hills and valleys. However, our intention here is to study
the valley in isolation from other valleys and hence we
choose ‘‘open’’ boundary conditions (at x 5 67.5 km),
which allow disturbances to pass through them with
minimal reflection and ideally should produce the so-
lution for an infinite domain. (For the open boundary
condition, the fifth-order advection scheme used here

goes to third order at the third point from the boundary
and second order at the second point.)

The present study is concerned with the fundamental
causes of the valley wind and, accordingly, we choose
to study the evolution of a motionless (u 5 y 5 w 5
0), stably stratified atmosphere (a hypothetical morning
condition) defined by

u 5 u 1 Gz,00 (11)

where G 5 3.2 K km21 and u00 5 300 K. To produce
motion from a state of rest, a simple heating is applied
along z 5 h(x, y) specified by

Q 5 Q sin(vt),max (12)

where v 5 2p/(24 h), Qmax 5 200 W m22, and the
model is integrated forward for one-quarter of a diurnal
cycle. Again, in the interest of arriving at the clearest
explanation for the valley wind, effects such as varying
sun angle, shading, etc., have been neglected.

The first thing that happens when a realistically large
heating is applied to the ground surface is that a su-
peradiabatic layer forms. Since the resolution used here
(Dx 5 Dy 5 1 km and 100 z levels up to H 5 5000
m) is far too coarse to simulate directly the ensuing
turbulent motions, recourse must be made to a param-
eterization. Hence the philosophy of this model and oth-
ers of its type (e.g., McNider and Pielke 1981) is that
the domain and resolution are chosen to resolve the flow
features that are on the scale of the topography, but the
effects of vertical turbulent heat transfer must be some-
how represented. Therefore, a fundamental building
block for understanding the valley wind is a knowledge
of the behavior of the convective boundary layer.

In keeping with the philosophy of the present work
of using simple but realistic models, we use the scheme
developed by Troen and Mahrt (1986, hereafter referred
to as TM) in the WRF model to represent the effects of
convective heat transfer in the vertical direction. There
is a wealth of knowledge on the simple case of the
growth of the mixed layer under light wind conditions
over flat horizontally homogeneous terrain (see, e.g.,
Stull 1988), and the simple TM model provides an ex-
cellent first approximation to the behavior of the con-
vective boundary layer. Figure 3 shows the solution for
potential temperature u (5Tp) from the WRF model
simulating the case of an atmosphere over flat, uniform
terrain using the TM boundary model and heating spec-
ified as in (12). As explained in TM, the basic features
of the convective boundary layer are captured by the
parameterization, such as a vertical heat flux profile that
is a nearly linear function of height and, consequently,
a vertical profile of u that is nearly constant (‘‘well
mixed’’) in a boundary layer capped by an inversion at
the top.

Although the profiles shown in Fig. 3 are realistic
representations of the convective boundary layer, the
shallow superadiabatic layer produced near the ground
is an unstable situation as far as a mesoscale model is
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FIG. 3. Profiles of potential temperature u (solid line), eddy diffusivity Km (dashed line), and
turbulent heat flux, 2Km(]u/]z 2 g ) (dotted line) in a convective boundary layer 6 h after
‘‘sunrise.’’

concerned. With the resolution used here (Dx 5 Dy 5
1 km), we found that shallow convective circulations
appeared in the superadiabatic layer at the minimum
resolved scale (4Dx). At the coarser horizontal resolu-
tions typical of mesoscale models, such circulations
would grow too slowly to be noticed. Hence the present
simulations are in a resolution regime where turbulence
cannot be explicitly resolved, yet the superadiabatic lay-
er can induce circulations that grow to noticeable size
over the integration period. Recognizing the circulations
as an inadequacy of the parameterization, we decided
to eliminate them by adding to the rhs of (6)–(9) the
second-order quasi-horizontal filter, rKH x, where2¹H

x 5 u, y, w, u, respectively; 5 ]2/]x2 1 ]2/]y2,2¹H

where the derivatives are taken along the model terrain-
following coordinate, and KH 5 300 m2 s21. The effects
of the filter on the features of interest here will be eval-
uated in section 5.

3. Two-dimensional circulations

Before proceeding to the discussion of the simulations
of thermally driven flow over the three-dimensional to-
pography z 5 h(x, y) (Fig. 2), it will be useful to examine
and review first the solutions produced in the two two-
dimensional topographies, z 5 hY(y) (the plateau) and
z 5 hX(x) (the valley), that constitute the three-dimen-
sional valley–plain topography.

a. Thermally driven wind along a slope connecting
two plateaus

Exact solutions for thermally driven flow in a non-
rotating, stably stratified fluid over an infinite plane of
constant slope were given by Prandtl (1942). Assuming
constant viscosity and thermal conductivity and a fixed
thermal anomaly at the surface, Prandtl’s solution il-
lustrates that a steady-state flow can be established in
which heat conducted away from the slope is exactly
balanced by an upslope advection of cooler air. Prandtl’s
analytical solution for along-slope velocity is of the
form

u(n) ø exp(2n/l) sin(n/l), (13)

where n is the distance normal to the slope and l is a
length scale related to the slope angle, static stability,
and the assumed-constant diffusivities. This solution in-
dicates an upslope-flowing layer close to the surface
changing with distance from the slope to a downslope
flow of decreased strength.

Since real upslope flows are invariably turbulent,
Prantdl’s solution provides at best only a qualitative
description of actual upslope flows. Improvements to
Prandtl’s model have involved using more sophisticated
models to represent the turbulent diffusivities, as re-
viewed by Egger (1990). The most complete treatment
to date of Prandtl’s problem is that of Schumann (1990),
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FIG. 4. Solution at t 5 6 h in the case of a two-dimensional plateau for the (a) along-slope wind
component, (b) vertical wind component, (c) eddy diffusivity, and (d) potential temperature.

who used a large eddy simulation (LES) model to sim-
ulate turbulent heat transfer over an infinitely long slope
and found that for small slope angles (#108) a well-
mixed layer is formed, which causes a strong temper-
ature inversion and a strong downslope flow at the outer
edge of the unstable boundary layer.

A further significant complication to Prandtl’s model
is that real slopes are of finite horizontal extent. The
infinitely long and constant slope of Prandtl’s problem
permits the simple rotation of coordinates that allows
Prandtl’s analytical solutions and makes feasible Schu-
mann’s (1990) LES calculation. Further progress toward
understanding the factors affecting real slope flows has
depended on analytical (Egger 1987a,b) and numerical
simulations of flows over finite-extent slopes such as
represented by (2), but using a parameterization for the
turbulent transfers since LES over such large domains
is not viable (e.g., McNider and Pielke 1981; Segal et
al. 1987). Such is the approach adopted here.

Figure 4 illustrates the flow produced at t 5 6 h by
imposing the heat flux described by (12) along the to-
pography represented by (2). The structure of the up-
slope flow is similar to the classical infinite-slope so-
lutions described above with a maximum upslope ve-
locity near the ground and return flow aloft (Fig. 4a).
The vertical structure of the slope flow can be charac-
terized as a well-mixed layer of upslope flow topped by
a return flow stronger than expected from Prandtl’s so-
lution, consistent with Schumann’s (1990) LES calcu-
lation. However, as can be seen in Fig. 4, the most
important departure from the Prandtl model is the pres-
ence of the plateaus. Far from the slope region, well-
mixed layers grow (Fig. 4d) since there is no balancing

tendency provided by along-slope cold-air advection.
Consistent with the latter is the fact that the mixed layer
is shallower over the slope (Figs. 4c,d). Further results
on solution sensitivity to the initial stability, slope, and
heating intensity can be found in Ye et al. (1987) and
Kuwagata and Kondo (1989). Incidentally, the local up-
draft maximum located near y 5 20 km in Fig. 4b is a
transient feature associated with the leading edge of the
cool air that has risen up the slope during the previous
6 h.

b. Thermally driven flow in a valley with a horizontal
floor

With the valley topography (3) there is now the ad-
ditional effect of two slope flows drawing air from a
common central location, producing a compensating
subsidence in the valley. This effect is illustrated in Fig.
5, where the solutions are shown at t 5 6 h, produced
as in the previous case with the heat flux (12) but now
applied along the valley topography (3). Figure 5 shows
that the flow is upslope along the valley sidewalls; there
is compensating subsidence in the core of the valley,
with a vertical velocity of 0(20.1 m s21). Notice that
the subsidence region extends well above the height of
the sidewalls (Fig. 5b). The thermal structure inside the
valley displays a mostly stable core region, with two
layers near the sidewalls where the slope flow has de-
veloped. This behavior is in agreement with previous
experimental and numerical studies (Bader and McKee
1983, 1985; Rampanelli and Zardi 2004). Figure 5d
shows that in the valley a well-mixed layer can be iden-
tified only in its lower part. In fact, comparing the field
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FIG. 5. As in Fig. 4 except for a two-dimensional valley.

of Km(x, z) (Fig. 5c) with that of u(x, z) (Fig. 5d) shows
that u has been modified below z ø 2000 m for all x,
even though the layer in which Km ± 0 in the valley
center only extends to z ø 1400 m. This comparison
suggests that the advective heat transport plays a crucial
role in producing the observed thermal structure, es-
pecially in the core region of the valley (Kondo et al.
1989; Noppel and Fiedler 2002). This advective heat
transport will be further investigated in section 5c. At
this display time of 6 h two transient updraft features,
analogous to that seen in Fig. 4b, have propagated out
of the domain and hence are not evident in Fig. 5b.

4. Thermally driven wind in a valley–plain system

In this section we describe the numerical solution with
heating (12) applied along the full valley–plain topog-
raphy h(x, y) shown in Fig. 2. By design h(x, y) is the
product of the slope connecting two plateaus hY(y) and
the two-dimensional valley hX(x) for which the two-
dimensional solutions were discussed in the previous
section. As a consequence the three-dimensional solu-
tions can be mostly understood as a composite of the
two-dimensional plateau and valley solutions (Figs. 4–
5) individually considered. However, as we shall dem-
onstrate below, the valley wind is a uniquely three-di-
mensional feature of the solution in the valley–plain
case.

Figures 6–8 show the solution at t 5 6 h in cross-
valley planes located at three along-valley positions.
Starting from the valley end (Fig. 6), one observes that
the wind field is nearly identical to the two-dimensional
valley simulation (Fig. 5). Moving closer to the valley

mouth at y 5 20 km, Fig. 7 shows that, while the cross-
valley circulation is similar to that at the valley end,
there is now an up-valley flow for all x, and for z ap-
proximately less than 1 km; there is down-valley flow
at higher altitudes. The along-valley wind speed is high-
est near the ground and shows a clear negative minimum
in the region of the valley mouth (Fig. 8b). The sub-
sidence region in the valley core occurs throughout the
valley atmosphere, from the mouth to the end, and the
subsequent downward heat transfer produces a stable
boundary layer throughout the entire valley core, as in
the two-dimensional case (Fig. 5). This effect is evident
when comparing panels (e) and (f ) of Figs. 6–8, showing
that the upward turbulent heat transfer from the ground
is limited to the lower part of the boundary layer and
that in the upper part, where the subsidence effect is
stronger, a different mechanism is at work, as discussed
in relation to Fig. 5.

Figures 9–10 show the solution at t 5 6 h in along-
valley planes located on the side of the domain located
at x 5 27.5 km and at the valley center (x 5 0), re-
spectively. The solution at the side of the domain (Fig.
9) is very similar to the two-dimensional solution for
the plateau (Fig. 4) except that, owing to the valley
circulation, there is outflow (inflow) at low (upper) lev-
els over the upper plateau (Fig. 9a). The solution along
the valley center (Fig. 10) is unlike either of the two-
dimensional solutions shown in Figs. 4–5. Figures 10b
and 10d show the up-valley wind reaching 2 m s21 at
the ground at low levels with a slightly stronger return
flow aloft. The subsidence shown in Fig. 10c begins
near the valley mouth (y 5 0) and is clearly associated
with divergence in the cross-valley plane (Figs. 6–8).
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FIG. 6. Cross-valley sections at y 5 120 km (valley end) at t 5 6 h in the case of the three-dimensional
plain–valley topography of the (a) cross-valley wind component; (b) along-valley wind component; (c) vertical
wind component, the region with w $ 10.005 m s21 is indicated with a dotted line; (d) wind vectors; (e)
eddy diffusivity; and (f ) potential temperature.

This subsidence affects the thermal structure of the
boundary layer, as may be seen by comparing Figs. 9f
and 10f: The boundary layer in Fig. 9f is mainly co-
incident with the layer in Fig. 9e where Km ± 0; the
boundary layer in Fig. 10f also coincides with the layer
where Km ± 0 over the plain; however, in the valley it
is strongly influenced by the subsidence effect. This
significant potential temperature anomaly above the val-
ley-top level (z 5 1 km) means that any attempt to
calculate the mean temperature of air within the valley
volume by simple estimates (such as the topographical
amplification factor, discussed in section 1) must come
to terms with the possibility of a significant heat flux
through the top of the valley volume.

5. Explanation of the valley wind

a. Acceleration of the wind along the valley

Because the valley floor along the valley center is
horizontal, the only effect that could produce an along-
valley wind there from a state of rest is the along-valley

pressure gradient ]p/]y at x 5 0. Assuming hydrostatic
balance in (8), using the last relation of (10), integrating
in z, and then differentiating the result in y leads to

H]p ]p g ] 1
ø 1 dz9. (14)E)]y ]y c ]y upz5H z

Analysis of the results indicates that the horizontal pres-
sure gradient at z 5 H is negligible; therefore neglecting
the first term on the rhs of (14) we can estimate the
pressure gradient term in (7) as

H]p 1 ]u
2c Q ø gQ dz9. (15)p E 2]y u ]yz

The solid line in Fig. 11 shows the term on the lhs of
(15) as a function of y evaluated at x 5 z 5 0; it is
positive and reaches a maximum near the valley mouth.
This structure is consistent with that of the up-valley
wind seen along z 5 0 in Fig. 10b. The dots in Fig. 11
show the term on the rhs of (15); the near overlap of
the dots with the solid curve in Fig. 11 confirms that
the flow occurs under hydrostatic balance and shows
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FIG. 7. As in Fig. 6 except for y 5 20 km.

the central importance of understanding the vertical
structure of the along-valley potential temperature dis-
tribution in explaining the valley wind.

Also included in Fig. 11 are the pressure gradient
term and its hydrostatic evaluation at x 5 0 and z 5
1200 m. The reversal of the sign of the pressure gradient
at this upper level is consistent with the occurrence there
of the down-valley wind. This reversal displays a qual-
itative similarity with that found in the above-discussed
studies of Prandtl (1942) and Schumann (1990), even
in the absence of any upsloping valley floor. However
the physical mechanisms producing these apparently
similar features are quite different. The mechanism for
the elevated layer of downslope flow in Prandtl’s
(1942) laminar solution (and its extension to the tur-
bulent case) is straightforward: the viscous (turbulent)
stress exerted by the thermally driven upslope flow on
the layer above it induces adiabatic cooling there; cool-
ing through diffusion of yet higher layers must even-
tually be balanced at steady state by downslope-flow
adiabatic warming. In the present case there is zero
ground slope along the valley axis and, as shown with
(15), all along-valley motions must be driven by the
vertical integral of ]u/]y. Figure 10f indicates that, for

z . 1800 m, ]u/]y , 0, which, as shown by (15) and
Fig. 11, contributes to a down-valley pressure gradient
acceleration at upper levels. Through an analysis of the
heat budget below, we demonstrate that the temperature
distribution shown in Fig. 10f, which drives both the
up- and down-valley winds, is a unique feature of the
three-dimensional valley–plain circulation.

b. Comparison with observations

Figure 12 shows vertical profiles of u on the valley
axis (x 5 0) over the plain (y 5 280 km) and within
the valley (y 5 120 km). As shown in Fig. 12, there
are significant differences between the classical vertical
profile of potential temperature over plain (cf. Fig. 12
with Fig. 3) and that within the valley. The depth-av-
eraged temperature difference (difference between ini-
tial and final) over the plain is roughly 2.08C, while that
within the valley is roughly 3.38C. Table 3 of Vergeiner
and Dreiseitl (1987) indicates that the barometric mean
temperature difference (in summer) is 2.18C in Munich
(the plain) while it is 4.08C at Innsbruck (the valley).
Since the measured difference is for the entire heating
period (9 h) and our simulations were carried out only
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FIG. 8. As in Fig. 6 except for y 5 0 km (valley mouth).

for 6 h, the relative weakness of the simulated excess
(3.38 2 2.08C) might be explained. Consistent with this
weakness in the simulated temperature excess in the
valley is the fact that the simulated maximum up-valley
wind is only 2 m s21, while the observations in Fig. 3
of Vergeiner and Dreiseitl (1987) show values closer to
6 m s21. We have carried out our simulations for a period
of 9 hours and find that the depth-averaged temperature
excess does not increase much after the initial 6 h, and
the averaged temperature of the valley atmosphere re-
mains roughly 1.48C warmer than over the plain. In fact
the two depth-averaged temperatures’ differences reach
3.68C over the plain and 5.08C in the valley. Due to this
nearly constant temperature unbalance between valley
and plain, the maximum up-valley wind does not in-
crease much after the initial 6 h of simulation, reaching
2.1 m s21, but the region where the up-valley wind is
blowing becomes wider in the along-valley direction.

The obtained values are still on the low side; however,
it should be kept in mind that the Inn Valley has a slope
roughly 1 in 500. We carried out simulations with a
valley slope of 1 in 500 and found in a 6-h simulation
that the depth-averaged temperature excess increased to
(4.28 2 2.08C) and the maximum up-valley wind in-

creases to 2.6 m s21. Hence we believe that the present
simulations are at least roughly consistent with the ob-
servations.

Finally, contemporaneosly with the present work,
analysis of observations in the Riviera Valley (Rotach
et al. 2004) is showing that subsidence heating is a major
contributor to heating in that valley.

c. Heat budget

Although it is qualitatively clear form Fig. 10 that
subsidence is a strong contributor to the warming of the
valley core, a quantitative evaluation of the effect is
desirable and is given here. The thermodynamic energy
budget within the model atmosphere is given by (9),
which can be rewritten as

]u ]u ]u ]u ] ]u
5 2u 2 y 2 w 1 K 2 gm1 2[ ]]t ]x ]y ]z ]z ]z

21 K ¹ u. (16)H H

The terms on the rhs of (16) can be separately evaluated
in order to assess the differences between the evolution
of the atmosphere over the plain and that within the
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FIG. 9. Along-valley sections at x 5 27.5 km (left side of valley) at t 5 6 h in the case of the three-
dimensional plain–valley topography of the (a) cross-valley wind component, (b) along-valley wind com-
ponent, (c) vertical wind component, (d) wind vectors, (e) eddy diffusivity, and (f ) potential temperature.

valley. Figure 13a shows the vertical profiles of the
terms providing the major contributions to (16) at y 5
240, 0, and 80 km, along the valley axis x 5 0. Since
u 5 0 at x 5 0, only four of the five terms on the rhs
of (16) can contribute. In addition, Fig. 13a shows that
at all three locations the along-valley temperature ad-
vection is small, so only the latter three terms on the
rhs side need be considered in the following discussion.

Over the plain (y 5 240 km), Fig. 13a shows that
the divergence of the turbulent heat flux ]/]z[Km(]u/]z
2 g)] is the main contributor to the potential temper-
ature tendency and that the remaining terms are negli-
gible. In the valley (y 5 0, 80 km), Fig. 13a shows that
the vertical-advection term is dominant in the upper part
of the boundary layer and the turbulent transport is the
most important term in the lower part of the layer, where
the effect of heating from the ground is stronger. The
combined effect of the vertical advection and the ver-
tical turbulent flux of heat produces the modification of
the vertical structure of the boundary layer shown in
Fig. 12. Hence vertical advection of potentially warmer
air downward from the free atmosphere is the most im-

portant contributor to warming in the upper layers with-
in and above the valley region.

As discussed at the end of section 5a, at heights above
z ø 1800 m, Fig. 10f indicates that the valley atmo-
sphere is relatively cool with respect to that of the plain.
Here we take a closer look at both this relative cooling
and the reasons for it. Figure 12 provides a comparison
between vertical profiles of potential temperature taken
over the plain (y 5 280 km) with those well within the
valley (y 5 120 km) at the mature stage of the valley
wind (t 5 6 h); Fig. 12 shows that the valley becomes
cooler than that over the plane above z ø 1800 m. This
figure, together with the u distribution shown in Fig.
10f, implies that ]u/]y changes from positive to negative
near z ø 1800 m. The heat budget at the same location
(Fig. 13a) shows that the cool air aloft is due to rising
motion there. The rising motion at upper levels in the
valley core is induced by the meeting of the return flows
of the opposing slope flows occurring on the valley walls
(Figs. 6–8). The height of the latter is to a first ap-
proximation the height of the boundary layer over the
plateaus surrounding the valley. With the establishment
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FIG. 10. As in Fig. 9 except for x 5 0 km (valley center).

FIG. 11. Along-valley pressure gradient acceleration at the valley
center, 2cpQ]p/]y (solid lines) from the model output along with
gQ (1/u2)]u/]y dz9, which is the pressure gradient accelerationH#z

assuming hydrostatic balance (dots). Upper and lower curves refer
to evaluation at z 5 0 and 1200 m, respectively.

FIG. 12. (a) Vertical profiles of potential temperature along the
valley axis (x 5 0 m) over the plain (y 5 280 km, solid line) and
in the valley region (y 5 120 km; bullet line) at t 5 6 h. The dark
solid line shows the initial profile.
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FIG. 13. Vertical profiles of the terms in the energy budget (16) (a) at y 5 260, 0, 80 km in the
middle of the valley: turbulent heating, ]/]z[Km(]u/]z 2 g )] (solid line); vertical advection w]u/]z
(dotted line); along-valley advection y]u/]y (diamond line); and the numerical filter KH u (bullet2¹H

line) and (b) at y 5 80 km and x 5 3, 6 km. Labeling convention is the same as in (a), except
advection represents vertical and along-slope contributions.
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of a region of ]u/]y , 0 along the valley axis, we can
see through (15) and Fig. 11 the reasons for a down-
valley wind at upper levels along the valley center.

It is interesting to note here that the occurrence of
such an upper counterflow and the governing physical
mechanisms have been the subject of a long and con-
troversial debate between scientists at the early stages
of valley wind studies. Wagner (1938, his section 5),
commenting on the upper-level down-valley wind, iden-
tified as a contributing factor (among others) the exis-
tence of potentially cooler air above the relatively warm
valley boundary layer; he further speculated that the
potential cool air is produced there by upward vertical
motion resulting from the convergence of the two op-
posing return flows associated with the upslope flows
on the valley walls. Hence Wagner’s (1938) explanation
is in substantial agreement with the present findings.

Figure 13a shows that the effect of the numerical filter
is to cool the valley center; this cooling is consistent
with the fact that the effects described above tend to
produce maximum u in the valley center [panel (f ) of
Figs. 6–10]. Hence the effect of the filter is simply to
reduce the horizontal gradient of u and, through (16),
reduce the magnitude of the simulated valley wind, but
otherwise does not effect the fundamental interpretation
of the valley wind given here.

The heat budgets within the valley at y 5 80 km on
the slope and at the valley top are shown in Fig. 13b.
The heat budget at x 5 3 km (midslope) indicates a
near balance between turbulent heating and along-slope
advection, reminiscent of the Prandtl model; the heat
budget at x 5 6 km (valley top) also indicates a rough
balance between turbulent heating and along-slope ad-
vection. In all cases there is a net positive tendency
since the heating is still in progress at 6 h.

6. Conclusions

In the present work we have reconsidered the basic
physical mechanisms governing the daytime evolution
of up-valley winds in mountain valleys. Using a series
of numerical simulations of thermally driven flow over
idealized three-dimensional topography, we have been
able to evaluate the mechanisms of excess valley heat-
ing, which, through the hydrostatic law, implies an up-
valley acceleration of air from an adjacent plain. In
particular, our analysis of the numerical solutions shows
that the compensating subsidence in the valley center
is the most important contributor to this excess heating.
This mechanism in which subsidence in the valley pro-
duces the valley–plain temperature contrast improves
on the current textbook description based on bulk ther-
modynamics arguments.

The understanding of valley winds developed here
has several important implications. For example, the
stability of the atmosphere above the valley is expected
to be an important factor since it will effect the subsi-
dence heating within the valley. Another implication is

that the up-valley wind can occur even in a valley with
vertical sidewalls (valley volume 5 plain volume), since
it is to be expected that there would still be compen-
sating subsidence at the valley center in such a valley.
The results here suggest that the subsidence effect will
produce noticeable differences in the observed vertical
structure of the convective boundary layer within and
outside of a valley (Rampanelli and Zardi 2004; Rotach
et al. 2004).

Since the desire here was to deepen our understanding
of the dynamics of the up-valley wind, we have inten-
tionally limited this study to a topography based on pa-
rameters that approximately describe typical mountain–
valley situations. An important following step would be
to carry out a systematic and more comprehensive series
of numerical solutions varying the topographical param-
eters over the range of observed values.

Perhaps the most fundamental limitation of the pres-
ent study is its reliance on a parameterization to simulate
the turbulent convective heat transfer from the ground
into the atmosphere. A simulation of the thermally driv-
en flow using the technique of large eddy simulation as
in Schumann (1990) would require a grid with much
finer horizontal resolution (;50 m) and, accordingly, a
much smaller time step (1.2 s); such a calculation would
be about 8000 times more costly than the three-dimen-
sional computation reported on here. While costly, such
calculations are presently possible and should be pur-
sued in order to cover the gap between the smallest
mesoscale phenomena, which can be explicitly resolved
by numerical weather prediction models, and smaller-
scale phenomena such as turbulence, which can be ex-
plicitly treated only by large eddy simulation models.

Finally we state again that, in order to isolate the
mechanisms of up-valley winds in their purest form, a
number of practically important effects have been ne-
glected, such as the occurrence of an initial stably strat-
ified layer capped by a ground-based inversion (cf.
Whiteman 1982; Whiteman and McKee 1982; Bader et
al. 1987), surface stress, an upward-sloping valley floor,
the Coriolis effect, nonuniform insolation depending on
the orientation of the valley axis with respect to sun
angle (Whiteman et al. 1989a,b) as well as on shading
by surrounding mountains’ shape (Colette et al. 2003).
The relative importance of those effects to the one stud-
ied here needs to be determined in future work.
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